

Center for Fatality Review & Prevention

THE EFFECTS OF CLIMATE CHANGE ON PREGNANCY AND REPRODUCTIVE HEALTH

Telling Stories to Save Lives

KEY FUNDING PARTNER

FEDERAL ACKNOWLEDGEMENT

The National Center is funded in part by Cooperative Agreement Number 2 UG7MC28482-08-00 from the US Department of Health and Human Services (HHS), Health Resources and Services Administration (HRSA), Maternal and Child Health Bureau (MCHB) as part of an award totaling \$2,400,997 annually with 0 percent financed with non-governmental sources. Its contents are solely the responsibility of the authors and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government.

HOUSEKEEPING

Before we get started

- This webinar is being recorded and will be available on the National Center's webpage (URL: <u>www.ncfrp.org</u>).
- Participants are muted. Use the question-and-answer box to ask questions.
- Due to the large number of participants, the speakers may be unable to answer all questions. Unanswered questions will be answered and posted with the recording.
- Contact the National Center (email: <u>info@ncfrp.org</u>) for any tech problems.

EVALUATION

https://www.surveymonkey.com/r/32BRMMX

Diane Pilkey, RN, MPH

Welcome and Introductions

Senior Nurse Consultant

Division of Child, Adolescent and Family Health Maternal and Child Health Bureau Health Resources and Service Administration

HRSA'S VISION FOR THE NATIONAL CENTER

IMPROVING SYSTEMS OF CARE AND OUTCOMES FOR MOTHERS, INFANTS, CHILDREN, AND FAMILIES

Assist state and community programs in:

- Understanding how CDR and FIMR reviews can be used to address issues related to adverse maternal, infant, child, and adolescent outcomes
- Improving the quality and effectiveness of CDR/FIMR processes
- Increasing the availability and use of data to inform prevention efforts and for national dissemination

Describe how climate change effects pregnancy, pregnancy outcomes, and reproductive health.

Discuss the impact of disasters, in particular high heat, on preterm birth and stillbirth.

Identify the ways that climate change contributes to disparities with potential action/solutions for fatality review teams.

Bring to light the challenges and concerns these emerging problems are posing to families and to maternal and newborn health.

PRESENTATION OBJECTIVES

Speakers

Marya Zlatnik, MD University of California San Francisco, School of Medicine

Esther McCant, BS Birth Doula Founder of Metro Mommy Agency

Climate Change & Reproduction

National Center for Fatality Review January 31, 2023

Marya G. Zlatnik, MD, MMS Professor, Maternal Fetal Medicine Program in Reproductive Health & the Environment, UCSF Associate Director, Maternal Fetal Health & the Environment, UCSF-Western States Pediatric Environmental Health Specialty Unit

No disclosures

Acknowledgements:

Funding for this work comes in part from the National Institute of Environmental Health Sciences (ESO22841), U.S. EPA STAR grant (RD83543301), & by the cooperative agreement award number 1 U61TS000237-01 from the Agency for Toxic Substances & Disease Registry (ATSDR). Its contents are the responsibility of the authors & do not necessarily represent the official views of the Agency for Toxic Substances & Disease Registry (ATSDR). The U.S. Environmental Protection Agency (EPA) supports the PEHSU by providing partial funding to ATSDR under Inter-Agency Agreement number DW-75-95877701. Neither EPA nor ATSDR endorse the purchase of any commercial products or services mentioned in PEHSU publications. U.S. Environmental Protection Agency U.S. EPA (award number 83543301). National Institutes of Health/National Institute of Environmental Health Sciences (award number PO1ES022841). Support for this research was provided by core center grant P30-ES030284 from the National Institute of Environmental Health.

Objectives

- Physiology of pregnancy
- Discuss impacts of climate change on reproduction
 - Mosquitos, floods, sea level rise, extreme heat, forest fires
 - Discuss impacts of air pollution on reproduction
 - How fossil fuels feed both climate change & chemical production
 - Define environmental injustice
- What we can do
 - Advice for pregnant people & disasters
 - Solutions we can employ

2022 Billion Dollar Disasters

This map denotes the approximate location for each of the 15 separate billion-dollar weather and climate disasters that impacted the United States January – September of 2022.

NOAA.gov: Through Sept 2022

2016

IOME Q SEARCH

SCIENCE

In Zika Epidemic, a Warning on Climate Change

[PDF] KEY MESSAGES – **ZIKA** VIRUS DISEASE

www.cdc.gov/zika/pdfs/zika-key-messages.pdf

KEY MESSAGES – **ZIKA** VIRUS DISEASE ... Changes in the environment caused by **climate** change can influence the spread of mosquitoes. o These changes can ...

IJGO

Editor: Michael Geary Impact factor (2021): 4.447 Journal Citation Reports (Clarivate, 2022): 17/85 (Obstetrics & Gynecology) Online ISSN: 1879-3479

GYNECOLOGY Obstetrics

Volume 160, Issue 2

Pages: e1-e4, 363-725 February 2023 IJGO Special publication:"The Impact of GlobalWarming on Women'sHealth"1.17.23

SPECIAL SECTION: THE IMPACT OF GLOBAL WARMING ON WOMEN'S HEALTH

EDITORIALS

🔂 Free Access

Code OB: We need urgent action on climate change and toxic chemicals

Tracey J. Woodruff, Annemarie Charlesworth, Marya G. Zlatnik, Santosh Pandipati, Nathaniel DeNicola, Iftikhar Latif

Pages: 363-365 | First Published: 17 January 2023

Pregnancy and Fetal/Neonatal Outcomes

- Preterm birth (PTB) \rightarrow neonatal death/disability
- Fetal growth restriction/small for gestational age (SGA)
 → stillbirth/neonatal death/disability
- Preeclampsia/gestational hypertension → PTB, placental insufficiency/SGA/stillbirth

Quick Review of Pregnancy Physiology: Goals of Maternal Adaptation

- Mass effect:
- 5L abdominal mass
- Hemodynamic:

perfusion of 4kg additional tissue

- Metabolic/Hormonal:
- O₂ & nutrients for woman & fetus

Quick Review of Pregnancy Physiology: Increased Cardiac Output

- Cardiac output increased by 150%
- Increase starts early in pregnancy
- Initial increase in CO from increase in stroke volume
- As pregnancy progresses, increased HR

Quick Review of Pregnancy Physiology: Lung Volumes

Tidal Volume	个 40%	
Respiratory rate	No change	
Minute ventilation (TV x RR)	个 40%	

University of California

San Francisco

Review: Timeline of Fetal Development

Weeks after fertilization (add 2w to = GA by LMP); 1st tri:4-13, 2nd tri:14-26, 3rd tri 27-40wks

Weeks from conception, Modified from, "Critical or sensitive stages in human prenatal development," by Image Editor

Taken on June 10, 2012

CLIMATE CHANGE

- Women & children 14x more likely to die than men in natural disasters
- Migration & movement \rightarrow risk
- Gender-based violence increases in disasters
- Changing distribution of pollutants: mercury, lead, & other toxins
- Expanding vectors: ZIKA, Dengue, Malaria
- Pregnancy-specific risks

Climate Change and Pregnancy: Floods

- Floods
 - Disruption of services
 - Barriers to medical care
 - Stress
 - Decreased birth weight
 - Neurodevelopmental impacts
 - Maternal & neonatal morbidity increased

•Flooding in Gilroy California, USA February 22, 2017. water from San Felipe lake and its surrounding sloughs and creeks flood agricultural fields outside of Gilroy, California. Planet Labs, Inc. https://www.planet.com/gallery/gilroy-flooding/

Hilmert CJ Health Psychol. 2016; Laplante DP Early Hum Dev. 2018; Guo C, Chen G Lancet Planet Health. 2020

Climate Change and Pregnancy: Sea level rise

 Increased <u>water source salinity</u> & <u>preeclampsia</u> in Bangladesh (a result of sea level rise)

Table 6. Association of (pre)eclampsia and/or gestational hypertension with water source.

Water Source	Cases (n = 202)	Controls (n = 1,006)	Crude Odds ratio (OR) (95% Cl)	OR Adjusted by age, parity, SES, mid-upper arm circumference (95% CI)
Rain+another ¹	10 (5.26)	234 (25.7)	1.00	1.00
Filter ²	25 (13.2)	117 (12.8)	4.99 (2.32–10.8)	5.32 (2.41–11.7)
Pond	47 (24.7)	251 (27.5)	4.38 (2.16-8.87)	5.31 (2.60-10.9)
Tube-well	108 (56.8)	310 (34.0)	8.15 (4.17–15.9)	8.30 (4.20–16.4)

1. 'Rain' has been combined with any other water source because of small numbers in the rainwater only group.

2. For brevity we refer to filtered pond water as 'filter'.

doi:10.1371/journal.pone.0108715.t006

Khan Plos ONE 2015

Pregnant Women+ High HeatDon't Mix

Physical changes in pregnancy make women **more susceptible** to high heat

Keuhn, McCormick Int J Environ Res Public Health 2017;14:853

Fetus generates heat

Climate Change & Pregnancy: Heat

- Extreme heat associated w/ shorter gestation Barcelona 2001-2005
- Higher temperatures associated w/ PTB
 - Bay Area: 5-20% increase in PTB for 10F increase in tem
 - California 2010
- (assume NCFR doesn't need a review of PTB/fatality)
- Increase in some birth defects
 - New York

Dadvand 2011, Basu 2010, Van Zutphen 2012, 2014

Odds of preterm birth during heatwaves.

Note: Weights are from random effects analysis

Matthew Francis Chersich et al. BMJ 2020;371:bmj.m3811

Odds of stillbirth during high heat

thebm

Matthew Francis Chersich et al. BMJ 2020;371:bmj.m3811

Climate Change-Pollution Cycle

Climate Change

Climate change results in new weather patterns, higher temperatures, longer droughts

Air Pollution

Pollution from wildfires, wood stoves, industrial sources, traps heat from sun

Wildfires

Prenatal Air Pollution & LBW & PTB

Α				Odds Ratio		Odd	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI		
Ayaz Hyder S2 2014	0.0862 0	0.0339	1.1%	1.09 [1.02, 1.16]					
Keita Ebisu 2012	0.0218 0	0.0121	8.5%	1.02 [1.00, 1.05]			-		
Michelle L. Bell 2007	0.0526 0	0.0258	1.9%	1.05 [1.00, 1.11]			F		
Olivier Laurent UCD 2014	0.0247	0.004	77.8%	1.03 [1.02, 1.03]					
Payam Dadvand 2014	0.157 0	0.0904	0.2%	1.17 [0.98, 1.40]			<u> </u>		
Rupa Basu 2014	0.01 0	0.0154	5.2%	1.01 [0.98, 1.04]			t		
Simone C Gray 2014	0.0198 0	0.0152	5.4%	1.02 [0.99, 1.05]			F		
Total (95% CI)			100.0%	1.03 [1.02, 1.03]			1		
Heterogeneity: Chi ² = 7.67, d	f = 6 (P = 0.26); I ² = 2	22%			0.5	0.7	-	1.5	-
Test for overall effect: Z = 7.0	3 (P < 0.00001)				0.5	0.7	1	1.5	2
В				Odds Ratio		0	dds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95%	CI	IV, Ra	ndom, 95%	CI	
David M. Stieb 2016	0.01	0.0366	22.2%	1.01 [0.94, 1.0	9]		+		
Eric Coker1 2015	0.157	0.0315	23.8%	1.17 [1.10, 1.2	4]		-		
Nancy L. Fleischer1 2014	0	0.0155	28.3%	1.00 [0.97, 1.0]	3]		•		
RachelMorelloFrosch5 2010	0.0392	0.0251	25.8%	1.04 [0.99, 1.0	9]		-		
Total (95% CI)			100.0%	1.05 [0.98, 1.12	2]		•		
Heterogeneity: Tau ² = 0.00; Cl	hi ² = 20.43, df = 3 (P	= 0.000	1); I ² = 85	%	H		<u> </u>	+	_
Test for overall effect: Z = 1.48	(P = 0.14)				0.5	0.7	1	1.5	2
C									
C				Odds Ratio		Od	ds Ratio		
Study or Subgroup log	[Odds Ratio]	SE W	eight IV.	, Random, 95% CI		IV, Ran	dom, 95%	CI	
Ayaz Hyder S2 2014	0 0.02	208 1	0.2%	1.00 [0.96, 1.04]					
Covin Pereiro 2010	0.0392 0.00	19 2	1.9%	1.04 [1.02, 1.06]			 _		
Gavin Pereira 2013	0.1222 0.00	124	3.5%	1.01 [0.03, 1.28]			-		
Jun Wu 2009	0.0296 0	01 1	9.6%	1.03 [1.01, 1.05]			•		
Sandie Ha 2014	0.0516 0.00	063 2	3.6%	1.05 [1.04, 1.07]					
Simone C Gray 2014	0.01 0.01	02 1	9.4%	1.01 [0.99, 1.03]			•		
Ulrike Gehring 2011	0.1989 0.19	965	0.2%	1.22 [0.83, 1.79]					-
Total (DEN CI)			0.0*	4 02 14 04 4 053					
Hotorogonoity Tou? = 0.00	Chiz = 10 12 df = 7	10	0.0%	1.03 [1.01, 1.05]	<u> </u>		-		_
Test for overall effect: Z = 3.3	73 (P = 0.0002)	(P = 0.)	008), 1*=	0370	0.5	0.7	1	1.5	2

Forest plot: risks of PM_{2.5} exposure & adverse birth outcomes during entire gestation.

A: PM_{2.5} (per IQR incr) & <u>term LBW</u>;

B: $PM_{2.5}$ (per 10 g/m³ incr) & term LBW;

C: PM_{2.5} (per IQR incr) & <u>PTB</u>

Maternal Risks : Hypertension

Air pollution linked to **preeclampsia** & **hypertension** in pregnancy

- Systematic review & meta-analysis
 HTN in pregnancy associated with:
- PM_{2.5}: OR 1.6 [95% CI 1.26–1.96] (for 5 μg/m³ increment)
- <u>NO₂</u>: OR 1.2 [95% CI 1.00–1.44] (for 10-μg/m³ increase)
- <u>PM₁₀</u>: OR 1.1 [95% CI 1.02– 1.26] (for 10-μg/m³ increase)

Pedersen M, et al., Ambient air pollution & pregnancy- induced hypertensive disorders: Hypertension. 2014;64:494. See also: Koman et al., World Med Health Policy. 2018; 10: 7–54. doi:10.1002/wmh3.257.

Climate change & Plastics & Health

- Fossil fuel extraction
 - Fuel use → air pollution, greenhouse gases
 - Petrochemicals → plastics
 →endocrine disruption
 (EDCs) → diabetes,
 obesity, PTB, gHTN, etc

STATES

Program on Reproductive

Environmental Justice: (EJ) refers to policy & advocacy intended to achieve equitable protection from environmental harms & access to benefits across demographic groups. vs. Environmental Racism

Photo: FINEARTAMERICA https://www.redefy.org/stories/environmental-injustice-is-a-silent-killer-heres-why

Association of Air Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review

	Studies an asso	Increased risk,	Studies finding racial disparity	Notable findings ^b
Exposure and outcome	No./tot	<u>a</u> median (range), % ^a	No./total No.	
Air pollution				Preterm hirth risk increased 52% for
Preterm birth	19/24	11.5 (2.0-19.0) ^c	10/19	asthmatic mothers
Low birth weight	25/29	10.8 (2.0-36.0) ^c	13/25	Low birth weight risk increased 3% for each 5-km proximity to a solid waste plant
Stillbirth	4/5	14.5 (6.0-23.0) ^c	1/4	Stillbirth risk increased 42% with high third-trimester exposure
Heat				
Preterm birth	4/5	15.8 (9.0-22.0) ^d	2/4	Preterm birth risk increased 11.6% per 5.6
Low birth weight	3/3	31.0 (13.0-49.0) ^d	1/3 -	Term birth weight decreased 16 g per IQR
Stillbirth	2/2	NA ^e	2/2	temperature increase
				Stillbirth risk increased 6% per 1 °C increase the week before delivery during
Summary of Evidence Key Questions 1 Through 6			the warm season	

JAMA Netw Open. 2020;3(6):e208243. doi:10.1001/jamanetworkopen.2020.8243

Copyright © 2012 American Medical Association. All rights reserved.

What causes so much preterm birth in Fresno County?

A CONTRACT POST	Table 2 Population	characteristics ir	n Fresno Count	y, 2009–2012 (<i>N</i>	= 53,843)				
	Population Characteris	stics	n (%)	Pollution Burden Quintile					
	the second se			1st	2nd	3rd	4th	5th	
	Race/ethnicity								
	White non-Hispanic	-	10,620 (19.7)	139 (35.0)	583 (53.5)	2042 (38.3)	4113 (20.0)	3665 (14.0)	
Carson	city Hispanic		32,302 (60.0)	212 (53.4)	357 (32.8)	2186 (41.0)	12,314 (59.7)	17,210 (65. <mark>5</mark>)	
Sz. ran dette	Black		3095 (5.8)	×	17 (1.6)	226 (4.2)	1159 (5.6)	1689 (6.4)	
	Asian		5675 (10.5)	×	100 (9.2)	512 (9.6)	2141 (10.4)	2899 (11.0)	
FNeicher	American Indian/Al	aska native	546 (1.0)	19 (4.8)	×	70 (1.3)	201 (1.0)	245 (0.9)	
	Type of P	Preterm Birth	< 37	weeks ($N = 4560$)	≥37 v	veeks (N = 49,283)			
	Type of P	reterm Birth	< 37	weeks ($N = 4560$)	≥37 w	(N = 49,283)			
	Environm		14 (%)	14 (90)		COR (93%)		1 (95%)
	Exposules	104	17 //		200 (0	0)	D	Defe	,
-0 Pr.		– 19th percentile	17 (0).4)	380 (0	.8)	Reference	Kefe	erence
	20) – 39th percentile	74 (*	1.6)	863 (1	.8)	1.84 (1.09,	3.12) 1.73	3 (1.01, 2
	San Diego 4() – 59th percentile	151	(3.3)	1834 (3.7)	1.78 (1.08,	2.93) 1.85	5 (1.12, 3
100mi	Tijuana 1 60) – 79th percentile	673	(14.8)	8666 (17.6)	1.68 (1.04,	2.72) 1.64	
EnviroScreen Scores of Pollution Purden by			2424						4 (1.01, 2
incrivir oscreen scores of Pollution Burgen by	County in Californi) – 100th percentil	e 363:	3 (79.7)	37,428	8 (76.0)	2.07 (1.28,	3.33) 2.00	4 (1.01, 2.) (1.25, 3.

Padula et al EHP 2018

https://prheucsf.blog/2018/12/06/what-causes-so-much-preterm-birth-in-fresnocounty/

UCc

Program on Reproductive Health and the Environme

Guidance from the Western States Pediatric Environmental Health Specialty Unit

Climate Change and Pregnancy

twitter.com/wspehsu

- Encourage pregnant people to:
 - Know local risks
 - Make a family emergency plan (https://www.redcross.org/get-help/how-to-prepare-for-emergencies/make-a-plan.html)
 - Prepare Go-bag (incl Rx)
 - Map area hospitals
 - Foster relationships: group prenatal care, doulas

https://wspehsu.ucsf.edu /main-

resources/environmentalhealth-topics/climatechange/

Guidance from the Western States Pediatric Environmental Health Specialty Unit

Climate Change and Pregnancy High/extreme heat

https://wspehsu.ucsf.edu/mainresources/environmental-healthtopics/climate-change/

 Limit outdoor activities to cooler times. Seek shade, take breaks, drink H2O <u>https://nihhis.cpo.noaa.gov/Planning-Preparing</u>

twitter.com/wspehsu

- Educate patients on s/sx of dehydration
- Access A/C (e.g. cooling center or mall) to reduce risk for heatstroke
- Fans should vent warmer air out or bring cooler air in. <u>Fans may provide comfort, but</u> <u>when temperature >90s, will not prevent heat-related illness.</u> Taking a cool shower/bath or moving to A/C'd place much better way to cool off.
- https://www. cdc.gov/disasters/extremeheat/heattips.html

Increasing global temperatures threaten gains in maternal and newborn health in Africa: A review of impacts and an adaptation framework

Intl J Gynecology & Obste, Volume: 160, Issue: 2, Pages: 421-429, First published: 30 July 2022, DOI: 10.1002/ijgo.14381

Guidance from the Western States Pediatric Environmental Health Specialty Unit

Climate Change and Pregnar Tornados & Floods

Be aware of tornado warning signs, including dark or ۲ greenish skies; large, dark, low-lying clouds; a loud roar; large hail; or a visible, rotating funnel.

twitter.com/wspehsu

Pregnant people should avoid entering areas before cleaned ۲ & made safe. The CDC has guidance for returning to a home impacted by mold here: https://www.cdc.gov/disasters/mold/index.html

wspehsu.ucsf.edu

Guidance from the Western States Pediatric Environmental Health Specialty Unit

Climate Change and Pregnancy

Air pollution

Keep the indoor air as clean as possible:

https://wspehsu.ucsf.edu/mainresources/environmental-healthtopics/climate-change/

- Avoid smoking & vaping
- Avoid using gas, propane, wood-burning stoves, fireplaces, or candles

twitter.com/wspehsu

Avoid ozone-generating air cleaners

wspehsu.ucsf.edu

- Avoid using unnecessary chemical products
- Avoid frying or broiling meat

Air Quality apps

What's New Version History Version 2.1.0

Updates to EPA's AirNow App increase public access to information about air quality all year, including during wildfires. more

1y ago

Preview

University of Californ San Francisco

https://wspehsu.ucsf.edu/main -resources/environmentalhealth-topics/climate-change/

- Invest in an air purifier or home air filter if in an area with air pollution or wildfire risk.
- A less expensive Do-It-Yourself alternative Filter-Fan can be made at home.
 - https://www.epa.gov/coronavirus/air-cleaners- hvac-filters-and-coronavirus-covid-19
 - Video https://www.youtube.com/ watch?v=aEn2xzlvrdo

How to Reduce Wildfire Smoke Exposure For Kids* * & pregnant people

Go Somewhere Without Smoke

✓ ~50-80%
 Go inside with
 (1) HVAC & MERV 13 filter
 or
 (2) a portable HEPA air cleaner

▼~30% Go Inside and Shut Windows DO NOT spend unnecessary time outside if the AQI is in the unhealthy ranges.

Cloth face coverings (like those for COVID) DO NOT reliably filter out small smoke particles.

-- For Short Periods of Time: ------

NIOSH N95 Mask correctly

More resources: wspehsu.ucsf.edu

Guidance from the Western States Pediatric Environmental Health Specialty Unit

U

twitter.com/wspehsu

https://wspehsu.ucsf.edu/main -resources/environmentalhealth-topics/climate-change/

- Especially important for people living in the "wildland-urban interface"
- Wildfire evacuation checklist: (https://ucanr.edu/ sites/fire/files/294649.pdf)
- Wildfire smoke and pregnancy advice from the CDC: https://www.cdc.gov/air/wildfire-smoke/pregnancy.htm
- Follow the air pollution recommendations above

Climate disasters & Hospitals

N	CCO	A
	-	

NC Clinicians for Climate Action @ClimateHealthNC

Florida hospitals evacuate patients as Hurricane Ian causes hospitals to lose running water.

- 💼 US hospitals need:
- 1. Flood/hurricane resilience investments
- 2. Decarbonization plans because **#climatechange** is making stronger hurricanes more frequent

chiefhealthcareexecutive.com Hurricane Ian's aftermath: Florida hospitals evacua Lee Health has transferred hundreds of patients be there's no running water. Patients are being moved

2:30 PM \cdot Oct 1, 2022 \cdot Twitter for Android

...

NEWS MEDIA - BRAND INSIGHTS CONFERENCES RESOURCES - SUBSCRIBE

Hurricane lan rips part of roof off Florida hospital

September 29, 2022 Ron Southwick

An HCA Healthcare hospital closed and transferred patients after losing a layer of roofing in high winds. Hospitals and nursing homes across Florida evacuated patients.

9.29.2022

Greenhouse Gas (GHG) emissions from US health care

Eckelman MJ, Sherman J (2016) Environmental Impacts of the U.S. Health Care System and Effects on Public Health. PLOS ONE 11(6): e0157014. https://doi.org/10.1371/journal.pone.0157014 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157014

Program on Reproductive

Source: Health Care Without Harm Climate Action Playbook

FIGO International Federation of Gynecology and Obstetric

What health care providers can do:

Care wisely

Choosing Wisely The American College of Obstetricians and Gynecologists

Nine Things Physicians and Patients Should Question

Society for Maternal-Fetal Medicine Society for Maternal-Fetal Medicine Twenty Things Physicians and Patients Should Question

- Don't order unnecessary imaging, labs, drugs
- ADVOCATE!
 - Ask your hospital café to serve less meat
- Plant a tree

Decarbonization can improve health

- Building electrification or vehicle electrification
 - Decreases GHG emissions
 - Decreases air pollution (PM2.5) resulting in health co-benefits
 - Decreases mortality
 - The most disadvantaged census tracts expected to receive more health benefits

Zhu, S., Mac Kinnon, M., Carlos-Carlos, A. *et al.* Decarbonization will lead to more equitable air quality in California. *Nat Commun* **13**, 5738 (2022). https://doi.org/10.1038

Annual avoided deaths per census tract with building electrification

Coal & oil power plant closures in CA \rightarrow reduced PTB nearby

For 0-5 km areas, this = reduction in preterm birth from 7% to 5%

Exposed mothers: LMP in the year-long period two years prior to power plant retirement Unexposed mothers: LMP in year after power plant retirement.

Casey JA, Karasek D, Ogburn EL, Goin DE, Dang K, Braveman PA, Morello-Frosch R. American Journal of Epidemiology. 2018, kwv110 https://doi.org/10.1093/aje/kwv110 Program on Reproductive Health and the Environmental

Conclusions

- Vulnerabilities of women and pregnant people to climate change
- Risks of preterm birth, small for gestational age, stillbirth
- Link between contributors to climate change & air & chemical pollution
- Suggestions to decrease risks and increase resilience
- We need health care providers to advocate on behalf of their patients

Placeholder for Esther McCant's slides

QUESTIONS

WHAT ADDITIONAL INFORMATION WOULD BE HELPFUL?

USE THE QUESTION-AND-ANSWER BOX

The box is located at the bottom of the screen

UNANSWERED QUESTIONS

All unanswered questions will be answered and posted on the National Center's website (URL: <u>www.ncfrp.org</u>).

EVALUATION

https://www.surveymonkey.com/r/32BRMMX

UPCOMING WEBINARS

Join the National Center and Our Partners

CONTACT INFORMATION

Phone: 800-656-2434 **O** info@ncfrp.org

THANK YOU FOR YOUR TIME!

www.ncfrp.org